

CONCOURS D'ADMISSION 2019

prépa

Mathématiques

Option Scientifique

Mardi 16 av<mark>ril</mark> 2019 de 8h00 à 12h00

Durée: 4 heures

Candid<mark>ats b</mark>énéficiant de la mesure « Tiers-temps » : 8h00 – 13h20

L'énoncé comporte 7 pages.

CONSIGNES

TOUTES LES COPIES DOIVENT COMPORTER UN CODE-BARRES D'IDENTIFICATION.

Aucun document n'est permis, aucun instrument de calcul n'est autorisé.

Conformément au règlement du concours, l'usage d'appareils communiquants ou connectés est formellement interdit durant l'épreuve.

Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé et à donner des démonstrations complètes – mais brèves – de leurs affirmations.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Ce document est la propriété d'ECRICOME, le candidat est autorisé à le conserver à l'issue de l'épreuve.

EXERCICE 1

On considère la suite $(I_n)_{n\geqslant 0}$ définie par :

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^{\frac{\pi}{2}} (\cos t)^n dt.$$

- 1. Montrer que I_n est bien défini pour tout $n \in \mathbb{N}$. Calculer I_0 , I_1 et I_2 .
- 2.(a) Étudier la monotonie de la suite $(I_n)_{n\geq 0}$. En déduire que la suite $(I_n)_{n\geq 0}$ converge.
 - (b) À l'aide d'une intégration par parties, montrer que : $\forall n \in \mathbb{N}, I_{n+2} = (n+1)(I_n I_{n+2}).$
 - (c) En déduire que : $\forall n \in \mathbb{N}, \ I_{2n} = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2} \text{ et } I_{2n+1} = \frac{(2^n n!)^2}{(2n+1)!}.$
 - (d) Compléter la fonction I suivante, qui prend en entrée un entier positif n, afin qu'elle retourne un vecteur y qui contient les 2n + 2 premiers termes de la suite $(I_n)_{n \ge 0}$.

- 3.(a) Rappeler un équivalent simple de $x \mapsto \cos(x) 1$ et $u \mapsto \ln(1+u)$ au voisinage de 0.
 - (b) Montrer que $n \ln \left(\cos(n^{-1/4})\right) \underset{n \to +\infty}{\sim} -\frac{1}{2}\sqrt{n}$. En déduire $\lim_{n \to +\infty} \left(\cos\left(n^{-1/4}\right)\right)^n$.
 - (c) Montrer que : $\lim_{n \to +\infty} \left(\cos \left(n^{-2/3} \right) \right)^n = 1.$
- 4.(a) Montrer que pour tout $n \in \mathbb{N}^*$:

$$\int_{0}^{n^{-1/4}} (\cos t)^n dt \leqslant n^{-1/4}$$

(b) Montrer que pour tout $n \in \mathbb{N}^*$:

$$\int_{n^{-1/4}}^{\frac{\pi}{2}} (\cos t)^n \mathrm{d}t \leqslant \frac{\pi}{2} \left(\cos \left(n^{-1/4} \right) \right)^n.$$

- (c) En déduire que $\lim_{n\to+\infty} I_n = 0$.
- 5.(a) Montrer que pour tout $n \in \mathbb{N}^*$:

$$I_n \geqslant \int_0^{n^{-2/3}} (\cos t)^n dt \geqslant n^{-2/3} \left(\cos \left(n^{-2/3}\right)\right)^n.$$

En déduire la nature de la série de terme général I_n .

- (b) Écrire une fonction en Scilab qui prend entrée un entier naturel n et qui renvoie en sortie le terme de rang n de la suite des sommes partielles associée à la série $\sum_{n\geq 0} I_n$.
- 6.(a) Montrer que pour tout réel t de $]-\pi,\pi[:\cos(t)+1=\frac{2}{1+\tan^2\left(\frac{t}{2}\right)}.$
 - (b) À l'aide du changement de variable $u = \tan\left(\frac{t}{2}\right)$, montrer que : $\int_0^{\frac{\pi}{2}} \frac{dt}{1 + \cos(t)} = 1$.
 - (c) Montrer que pour tout entier $n: \sum_{k=0}^{n} (-1)^k I_k = \int_0^{\frac{\pi}{2}} \frac{dt}{1 + \cos(t)} \int_0^{\frac{\pi}{2}} \frac{(-\cos(t))^{n+1}}{1 + \cos(t)} dt.$
 - (d) Montrer que : $\forall n \in \mathbb{N}, \left| \int_0^{\frac{\pi}{2}} \frac{(-\cos(t))^{n+1}}{1 + \cos(t)} dt \right| \leqslant I_{n+1}.$
 - (e) En déduire que la série $\sum_{k\geqslant 0} (-1)^k I_k$ est convergente et déterminer sa somme.

EXERCICE 2

Soit n un entier naturel supérieur ou égal à 2.

On dit qu'un vecteur $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ de $\mathcal{M}_{n,1}(\mathbb{R})$ est symétrique (respectivement antisymétrique)

lorsque:

$$\forall i \in [1, n], \quad x_i = x_{n+1-i}, \quad \text{(respectivement } x_i = -x_{n+1-i}. \text{)}.$$

On note F l'ensemble des vecteurs symétriques de $\mathcal{M}_{n,1}(\mathbb{R})$ et G l'ensemble des vecteurs antisymétriques de $\mathcal{M}_{n,1}(\mathbb{R})$.

On note $S = (s_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ la matrice définie par :

$$\forall (i,j) \in [1,n]^2, \quad s_{i,j} = \begin{cases} 1 & \text{si} \quad i = n+1-j, \\ 0 & \text{si} \quad i \neq n+1-j. \end{cases}$$

Partie A

Dans cette partie et uniquement dans cette partie, on étudie le cas particulier où n = 3. La matrice S est alors la suivante :

$$S = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- 1. Calculer S^2 . En déduire les valeurs propres de S.
- 2. Déterminer une base de F et de G. Vérifier que F et G sont des sous-espaces propres de S.
- 3. En déduire que : $F \oplus G = \mathcal{M}_{3,1}(\mathbb{R})$.

Partie B

On revient dans la suite dans le cas général où n est un entier supérieur ou égal à 2.

- 4.(a) Expliciter S et justifier que S est diagonalisable.
 - (b) Calculer SX lorsque $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.
 - (c) Pour i et j deux entiers de [1, n], expliciter le coefficient en ligne i et colonne j de S^2 en fonction des coefficients $s_{k,\ell}$ de S.

En déduire que S^2 est la matrice identité d'ordre n.

5.(a) Soit X un vecteur de $\mathcal{M}_{n,1}(\mathbb{R})$. Montrer qu'il existe un unique couple (Y, Z) de vecteurs de $\mathcal{M}_{n,1}(\mathbb{R})$ tel que :

$$Y \in F$$
, $Z \in G$ et $X = Y + Z$.

- (b) Montrer que F et G sont les sous-espaces propres de S. Préciser les valeurs propres associées.
- 6. Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que :

$$\forall (i,j) \in [1,n], \quad a_{i,n+1-j} = a_{n+1-i,j}$$

On considère λ une valeur propre de A et X un vecteur propre associé.

- (a) Vérifier que AS = SA.
- (b) Montrer que SX est un vecteur propre de A.
- (c) On pose Y = X + SX. Exprimer AY en fonction de Y et λ .
- (d) En déduire que le sous-espace propre $E_{\lambda}(A)$ associé à la valeur propre λ de A contient nécessairement un vecteur symétrique non nul ou un vecteur antisymétrique non nul.

PROBLEME

Une urne contient initialement une boule blanche et une boule noire. On effectue une succession de tirages d'une boule dans cette urne. Après chaque tirage, on remet la boule tirée dans l'urne, et on rajoute dans l'urne une boule de couleur opposée à celle qui vient d'être tirée.

On suppose que cette expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$.

Pour tout $k \in \mathbb{N}$, on note X_k le nombre de boules blanches présentes dans l'urne juste avant le (k+1)-ième tirage. En particulier, on a $X_0 = 1$. On admet que pour tout entier k, X_k est une variable aléatoire de $(\Omega, \mathcal{T}, \mathbb{I}P)$.

Partie A

- 1. Déterminer la loi de X_1 . Donner son espérance et sa variance.
- 2. Justifier soigneusement que la loi de X_2 est donnée par :

$$IP([X_2 = 1]) = \frac{1}{6}, \qquad IP([X_2 = 2]) = \frac{2}{3}, \qquad IP([X_2 = 3]) = \frac{1}{6}.$$

- 3. Préciser l'ensemble $X_k(\Omega)$ des valeurs que peut prendre X_k .
- 4. Soient $i \in \mathbb{N}^*$ et $j \in X_k(\Omega)$. Déterminer $\mathbb{P}_{[X_k=j]}([X_{k+1}=i])$. (On distinguera différents cas selon les valeurs relatives de i et j).
- 5. Déduire de ce qui précède que :

$$\forall k \in \mathbb{N}, \ \forall i \in \mathbb{N}^*, \ \ I\!P([X_{k+1} = i]) = \frac{i}{k+2} I\!P([X_k = i]) + \frac{3+k-i}{k+2} I\!P([X_k = i-1]).$$
 (*)

- 6. À l'aide de la formule (*), déterminer la loi de X_3 .
- 7.(a) Montrer que pour tout $k \in \mathbb{N} : \mathbb{P}([X_k = 1]) = \frac{1}{(k+1)!}$.
 - (b) Déterminer pour tout $k \in \mathbb{N}$, la valeur de $\mathbb{P}([X_k = k+1])$.
 - (c) Pour tout $k \in \mathbb{N}$, on pose : $a_k = (k+1)! \times \mathbb{P}([X_k = 2])$. Exprimer a_{k+1} en fonction de a_k et de k. Montrer que la suite $(b_k)_{k \geqslant 0}$ définie par : $\forall k \in \mathbb{N}, b_k = a_k + k + 2$ est géométrique. En déduire alors que :

$$\forall k \in \mathbb{N}, \ \mathbb{P}([X_k = 2]) = \frac{2^{k+1} - k - 2}{(k+1)!}.$$

Partie B

8. Que renvoie la fonction Scilab suivante pour un entier k non nul? Détailler le fonctionnement de la ligne 5.

```
1
   function x = mystere( k )
2
      n = 1
      b = 1;
3
       for i = 1 : k
4
          r = floor(rand()*(n+b)+1)
5
6
          if r > n then
7
             n = n + 1
8
          else
9
             b = b + 1
10
          end
11
       end
12
       x = b
13
   endfunction
```

9. Écrire une fonction Scilab d'en-tête function LE = loi-exp(k,N) qui prend en entrée un entier strictement positif k et un entier N, qui effectue N simulations de k tirages successifs dans l'urne et qui retourne un vecteur LE qui contient une estimation de la loi de X_k (c'est-à-dire que pour chaque $i \in [1, k+1]$, LE(i) contient la fréquence d'apparition de l'événement $[X_k = i]$ au cours des N simulations).

On pourra utiliser la fonction mystere.

10. Recopier et compléter la fonction loi-theo suivante, qui prend en entrée un entier strictement positif n, afin qu'elle retourne un vecteur LT qui contient la loi théorique de X_n .

```
1
   function LT = loi-theo(n)
2
       M = zeros(n, n + 1)
3
       M(1,1) = 1 / 2
       M(1,2) = 1 /
4
5
       for k = 1 : n -
          M(k+1,1) =
6
7
          for i = 2 : k +
8
9
10
          M(k+1,k+2)
11
       end
12
   LT =
         . . . . . . . .
13
   endfunction
```

11. Un étudiant nous propose comme loi de X_5 le résultat suivant :

k	1	2	3	4	5	6
$IP([X_5=k])$	0.001368	0.079365	0.419434	0.418999	0.079454	0.00138

A-t-il utilisé loi-exp ou bien loi-theo?

Partie C

12.(a) À l'aide de la formule (*), montrer que :

$$\forall k \in \mathbb{N}, \ E(X_{k+1}) = \frac{k+1}{k+2}E(X_k) + 1.$$

(b) Déduire de ce qui précède que :

$$\forall k \in \mathbb{N}, \ E(X_k) = \frac{k+2}{2}.$$

(c) Soit Y_k la variable aléatoire égale au nombre de boules noires présentes dans l'urne après k tirages.

Justifier que X_k et Y_k ont même espérance, puis retrouver le résultat de la question précédente. On admettra pour la suite que :

$$\forall k \in \mathbb{N}^*, \ V(X_k) = \frac{k+2}{12}.$$

13.(a) Soit $\alpha > 0$. Montrer que :

$$\lim_{k \to +\infty} \mathbb{P}\left(\left| \frac{X_k}{k+2} - \frac{1}{2} \right| < \alpha\right) = 1$$

(b) Interpréter ce résultat et le justifier intuitivement.

Partie D

14. Pour tout couple d'entiers (i, j) tels que $1 \leq j < i$, on définit l'application $\varphi_{i,j}$ par :

$$\varphi_{i,j}: \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ P \longmapsto jP(X+1) - iP(X)$$
.

- (a) Montrer que $\varphi_{i,j}$ est linéaire.
- (b) Pour $P \in \mathbb{R}[X]$, montrer que $\deg(\varphi_{i,j}(P)) = \deg(P)$.
- (c) En déduire que $\varphi_{i,j}$ est injective.
- (d) Montrer que pour tout polynôme P dans $\mathbb{R}[X]$, il existe un polynôme Q dans $\mathbb{R}[X]$ tel que $\varphi_{i,j}(Q) = P$.

(Pour P non nul, on pourra s'intéresser à la restriction de $\varphi_{i,j}$ à $\mathbb{R}_n[X]$ où n est le degré de P).

Ce qui précède montrant que $\varphi_{i,j}$ est un automorphisme, on définit le polynôme $P_{i,j}$ pour tout couple d'entiers (i,j) tels que $1 \leq j \leq i$, en posant :

$$P_{1,1}(X) = 1$$
, et pour $1 \le j < i$, $P_{i,j}(X) = \varphi_{i,j}^{-1}((3 + X - i)P_{i-1,j}(X))$,

et enfin pour tout entier i > 1,

$$P_{i,i}(X) = -\sum_{j=1}^{i-1} P_{i,j}(0).$$

- 15.(a) Vérifier que : $P_{2,1}(X) = -X 2$, puis calculer $P_{2,2}(X)$.
 - (b) Vérifier que : $P_{3,2}(X) = -2X 4$.

On admettra dans la suite que : $P_{3,1}(X) = \frac{1}{2}X^2 + \frac{3}{2}X + 1$ et $P_{3,3}(X) = 3$.

16. On considère, pour tout entier i de \mathbb{N}^* , la propriété suivante :

$$\mathcal{H}_i : \ll \forall k \in \mathbb{N}, \ I\!P([X_k = i]) = \frac{1}{(k+1)!} \sum_{i=1}^i P_{i,j}(k) j^k \gg.$$

On souhaite montrer par récurrence que, pour tout i de \mathbb{N}^* , \mathcal{H}_i est vraie.

- (a) Montrer que \mathcal{H}_1 est vraie.
- (b) Soit i > 1. On suppose que \mathcal{H}_{i-1} est vraie et on pose :

$$\forall k \in \mathbb{N}, \ \alpha_k = (k+1)! \mathbb{P}([X_k = i]) - \sum_{i=1}^{i-1} P_{i,j}(k) j^k.$$

En utilisant la formule (*) et la relation $(3 + X - i)P_{i-1,j}(X) = \varphi_{i,j}(P_{i,j}(X))$, montrer que la suite $(\alpha_k)_{k \ge 0}$ est géométrique.

Déterminer α_0 et en déduire que \mathcal{H}_i est vraie.

- (c) Conclure.
- 17.(a) En utilisant le résultat de la question 15(a), retrouver le résultat de la question 7(c).
 - (b) Déterminer $\mathbb{P}([X_k = 3])$ pour tout $k \in \mathbb{N}^*$.

