CONCOURS NATIONAL D'ACCÈS Aux Écoles de Management (CNAEM)

Session 2015

ÉPREUVE DE MATHÉMATIQUES

Durée 4 heures

FILIÈRE: ECT

Exercice 1

On donne les matrices:

$$A = \begin{pmatrix} \frac{7}{2} & \frac{-3}{2} & -3\\ \frac{3}{2} & \frac{1}{2} & -3\\ \frac{3}{2} & \frac{-3}{2} & -1 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & -1\\ 1 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{pmatrix} \text{ et } I = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Partie I

1) a) Montrer que P est une matrice inversible et calculer sa matrice inverse.

b) Vérifier que
$$P^{-1}\begin{pmatrix} \frac{-3}{2} \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} \frac{-5}{4} \\ \frac{1}{2} \\ \frac{-3}{4} \end{pmatrix}$$

- 2) a) Vérifier que A=PDP⁻¹
- b) Montrer par récurrence que pour tout entier naturel n, $A^n = PD^nP^{-1}$.
- c) pour tout entier naturel n, calculer Dⁿ en fonction de n.
- d) Pour tout entier naturel n, en déduire l'expression de Aⁿ en fonction de n.

Partie II

Les suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}$ sont définies par les conditions initiales : $x_0=-4$, $y_0=-2$ et $z_0=-1$ et pour tout entier naturel n

$$\begin{cases} x_{n+1} = \frac{7}{2}x_n - \frac{3}{2}y_n - 3z_n + 1 \\ y_{n+1} = \frac{3}{2}x_n + \frac{1}{2}y_n - 3z_n + 1 \\ z_{n+1} = \frac{3}{2}x_n - \frac{3}{2}y_n - z_n - 2 \end{cases}$$

On pose B= $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ et pour tout entier naturel n, $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$

1) Justifier que pour tout entier naturel n, $X_{n+1} = AX_n + B$. (1)

2) On se propose de trouver la matrice colonne $U \in \mathcal{M}_{3,1}(\mathbb{R})$ telle que :

$$U=AU+B$$
 (2)

- a) Montrer que la relation (2) est équivalente à (I-A)U=B.
- **b)** Vérifier que $A^2 A 2I = 0$ où 0 est la matrice nulle de $\mathcal{M}_{3,1}(\mathbb{R})$ et que $\left(-\frac{1}{2}A\right)(I-A) = I$.
- c) En déduire que la matrice I-A est inversible et calculer son inverse.
- **d)** En déduire que $U = -\frac{1}{2}AB$ et vérifier que $U = \begin{pmatrix} -4 \\ -4 \\ -1 \end{pmatrix}$.
- 3) a) Montrer que pour tout entier naturel n $X_{n+1} U = A(X_n U)$.
- **b)** En déduire par récurrence que pour tout entier naturel n, $X_n U = A^n(X_0 U)$.
- **4)** En utilisant l'expression de A^n obtenue dans la partie 1) question 2) d), calculer x_n , y_n et z_n en fonction de n.
- **5)** Posons $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ les suites qui sont définies par les conditions initiales $a_0=e^{-4}$, $b_0=-2$ et $c_0=e^{-1}$, telles que a_n , b_n et c_n sont positives et pour tout entier naturel n.

$$\begin{cases} \ln(a_{n+1}) = \frac{7}{2}\ln(a_n) - \frac{3}{2}b_n - 3\ln(c_n) + 1 \\ b_{n+1} = \frac{3}{2}\ln(a_n) + \frac{1}{2}b_n - 3\ln(c_n) + 1 \\ \ln(c_{n+1}) = \frac{3}{2}\ln(a_n) - \frac{3}{2}b_n - \ln(c_n) - 2 \end{cases}$$

Exercice 2

Soit f la fonction définie pour tout réel x par $f(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{8}(x^3 + 2x^2)e^{\frac{-x}{2}} & \text{si } x \ge 0 \end{cases}$

On désigne par (C) la courbe représentative de f dans un repère du plan.

Partie I

- 1) Déterminer la limite de f en $+\infty$.
- 2) Montrer que pour tout x réel positif, $f'(x) = \frac{-1}{16}x(x^2 4x 8)e^{\frac{-x}{2}}$.
- 3) En déduire que pour tout x réel positif $f'(x) = \frac{-1}{16}x(x-x_1)(x-x_2)e^{\frac{-x}{2}}$, avec x_1 et x_2 à déterminer.
- **4)** Donner le tableau de variation de f sur \mathbb{R}^+ .

Partie II

- 1) On pose $I_0 = \int_0^{+\infty} e^{\frac{-x}{2}} dx$ et pour tout entier naturel non nul, $I_n = \int_0^{+\infty} x^n e^{\frac{-x}{2}} dx$.
- a) Montrer que I₀ est une intégrale convergente égale à 2.
- b) En utilisant une intégration par parties, montrer que pour tout réel positif A,

$$\int_0^A x^{n+1} e^{\frac{-x}{2}} dx = -2A^{n+1} e^{\frac{-A}{2}} + 2(n+1) \int_0^A x^n e^{\frac{-x}{2}} dx$$

- c) Montrer que $\lim_{A \to +\infty} A^{n+1} e^{\frac{-A}{2}} = 0$, On pourra faire un changement de variable en posant $t = \frac{A}{2(n+1)}$.
- **d)** Montrer que pour tout entier naturel n, I_n est convergente et que : $I_{n+1} = 2(n+1)I_n.$
- e) En déduire par récurrence que pour tout entier naturel n, $I_n = 2^{n+1}n!$.
- 2) Soit la fonction g définie sur R par $g(x) = \frac{1}{16} f(x)$.

a) Montrer que g est une densité de probabilité d'une variable aléatoire que l'on notera s.

Calculer l'espérance E(S) et la variance V(S) de S.

Partie III

Posons pour tout entier naturel non nul N, $s_N = \sum_{k=1}^{N} \frac{I_{k-1}}{(k+1)!2^k}$

- **1) a)** Vérifier que pour tout entier naturel non nul k, $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$
- **b)** En déduire que pour tout entier naturel non nul N, $S_N = 1 \frac{1}{N+1}$
- 2) Montrer que $\sum_{n\geq 1} \frac{I_{n-1}}{(n+1)!2^n}$ est convergente et calculer sa valeur.

Exercice 3

On dispose d'un dé cubique classique équilibré et d'une pièce de monnaie équilibrée. On lance le dé et on observe son résultat. Si celui-ci est un nombre pair c'est-à-dire 2 ou 4 ou 6, on lance la pièce de monnaie deux fois.

Dans tous les autres cas, on lance la pièce de monnaie une seule fois.

On note X la variable aléatoire égale au résultat du dé. On note Y la variable aléatoire égale au nombre de piles apparus au cours de cette expérience.

- 1) a) Vérifier que X suit une loi uniforme.
- **b)** Donner l'espérance E(X) et la variance V(X).
- 2) a) Montrer que pour $k \in \{1, 3, 5\}$, $P_{(X=k)}(Y=0) = \frac{1}{2}$.
- **b)** Montrer que pour $k \in \{2, 4, 6\}$, $P_{(X=k)}(Y=0) = \frac{1}{4}$.
- c) En déduire la valeur de P(Y=0).
- 3) Montrer que $P(y=2)=P((Y=2)\cap(X=2))+P((Y=2)\cap(X=4))+P((Y=2)\cap(X=6)).$

- **4)** Donner finalement la loi de la variable aléatoire Y, Calculer son espérance E(Y) et sa variance V(Y).
- 5) a) Donner, sous la forme d'un tableau à double entrée, la loi du couple (X, Y).
- **b)** Est-ce que les deux variables X et Y sont indépendantes ? Justifier votre réponse.
- c) Calculer la covariance de X et Y.
- d) Déterminer le coefficient de corrélation entre les deux variables aléatoires X et
 Y.

Exercice 4

On considère la fonction définie sur R par $\begin{cases} f(t) = 0, & \text{si } t \le 0 \\ f(t) = e^{\frac{-1}{4}t} - e^{\frac{-1}{3}t}, & \text{si } t > 0 \end{cases}$

- 1) a) Montrer que f est continue sur R.
- **b)** Soit θ un réel de l'intervalle]0,1[, montrer que $\theta^3 \theta^4 > 0$.
- c) Montrer que si t> 0 alors $e^{\frac{-1}{12}t}$ est un réel de l'intervalle [0, 1[.
- **d)** En déduire que pour tout réel t, $f(t) \ge 0$, (on pourra poser $\theta = e^{\frac{-1}{12}t}$).

Dans toute la suite de l'exercice on note pour tout réel x, $F(x) = \int_{-\infty}^{x} f(t) dt$.

- 2) a) Que vaut F(x) lorsque $x \le 0$? Justifier que si x > 0, $F(x) = \int_0^x f(t) dt$.
- **b)** Montrer que pour tout couple de réels (x, a) tel que x > 0 et a > 0, $\int_0^x e^{-at} dt = \frac{1}{a} (1 e^{-ax})$
- c) En déduire que pour tout réel x strictement positif, $F(x)=1-4e^{\frac{-1}{4}x}+3e^{\frac{-1}{3}x}$
- **d**) Déterminer $\lim_{x \to +\infty} F(x)$

On considère alors une variable aléatoire X admettant une densité f et de fonction de répartition F.

- 3) Vérifier que $P(3 < X \le 4) = -7 + +e^{-1} + 3e^{\frac{-4}{3}} + 4e^{\frac{-3}{4}}$.
- **4)** On s'intéresse dans cette question à l'équation notée (E) : $P(X \le \mu) = P(X > \mu)$. Equation dont l'inconnue est le réel strictement positif μ .
- a) i) Justifier que pour tout réel x, $P(X > x) = 1 P(X \le x)$.
- ii) En déduire que l'équation (E) est équivalente à l'équation (E') : $P(X \le \mu) = \frac{1}{2}$
- iii) Montrer que (E') est équivalente à l'équation (E'') : $1-8e^{\frac{-1}{4}\mu}+6e^{\frac{-1}{3}\mu}=0$.
- **b)** Montrer que la fonction g définie sur]0, 1[par $g(\theta)=1-8\theta^3+6\theta^4$ réalise une bijection de]0, 1[sur]-1, 1[.
- c) En déduire que l'équation (E) admet une et une seule solution (qu'on ne cherchera pas à calculer).

